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Using a model of wealth distribution where traders are characterized by quenched random saving propen-
sities and trade among themselves by bipartite transactions, we mimic the enhanced rates of trading of the rich
by introducing the preferential selection rule using a pair of continuously tunable parameters. The bipartite
trading defines a growing trade network of traders linked by their mutual trade relationships. With the prefer-
ential selection rule this network appears to be highly heterogeneous characterized by the scale-free nodal
degree and the link weight distributions and presents signatures of nontrivial strength-degree correlations. With
detailed numerical simulations and using finite-size scaling analysis we present evidence that the associated
critical exponents are continuous functions of the tuning parameters. However the wealth distribution has been
observed to follow the well-known Pareto law robustly for all positive values of the tuning parameters.
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I. INTRODUCTION

In a society different traders do business among them-
selves. Thus the wealth distribution of the society dynami-
cally evolves through this trading process. In the simplest
possible situation pairs of traders make economic transac-
tions. Such a mutual interaction can be looked upon estab-
lishing a connection between them. Consequently one can
define a trade network where each trader is a node and a link
is established between a pair of nodes when the correspond-
ing traders make a mutual trading. In this paper, we study the
growth and the structural properties of a trade network in the
framework of a well-known model of wealth distribution,
namely, the kinetic exchange model �KEM� with quenched
random saving propensities �1,2�.

Over the last decade a lot of research efforts have been
devoted to study the structures, properties and functions of
different real-world as well as theoretically defined model
networks �3�. The key characteristic features of these net-
works include their small-world properties, which simply
implies the existence of a very short global connectivity even
when the sizes of the networks are extremely large �4�. Sec-
ond, there are a large class of networks that are extremely
heterogeneous. Their heterogeneity are quantified by their
degree �number of links meeting at a node� distributions.
Usually such networks are observed to have power-law de-
cay of their degree distributions and are called scale-free
networks �5�. It has also been apparent that the links of many
of these networks appear with a wide variation in strengths.
In graph theoretic language the link strengths are called the
“weights” in general. Such weighted networks have also
been studied in the context of the passenger traffics of airport
networks �6,7�, international trade networks, etc �8,9�.

More than a century ago Pareto proposed that the distri-
bution of wealth x in a society to be P�x��x−��+1� �10�. This
form of distribution is generally known as Pareto distribution
for a value of ��1 �11�. Pareto suggested that �=1 for the

wealth distribution and it is known as the Pareto law.
Application of the concepts of statistical physics to the

wealth/income distribution in a society goes back to 1931
when Saha and Srivastava had suggested that the form of the
wealth distribution may be similar to the Maxwell-
Boltzmann distribution of molecular speeds in an ideal gas
�12,13�. Over the last few years renewed attempts have been
made using statistical physics methods. The main objective
is to reproduce the recently collected individual income tax
data in different countries reflecting the wealth distributions.
It has been observed that these data fit well to exponentially
decaying functions for small wealth which however ends
with power-law tails in the large wealth regime.

Drăgulescu and Yakovenko �DY� �14� modeled a bipartite
trading between two traders using the analogy of a pair of
gas molecules interacting through an energy conserved elas-
tic collision in an ideal gas. Starting from an arbitrary distri-
bution of individual wealth the system evolves through a
series of bipartite trades to arrive at a stationary state where
the wealth distribution assumes its time independent form.
While the DY model produces only an exponentially decay-
ing wealth distribution, later modifications were suggested
for its improvement. This class of models are now referred as
the KEMs �1,2�.

In a KEM the society is considered as a collection of N
traders, each having a certain amount of money equivalent to
his wealth xi , �i=1,N� which he uses for mutual trades with
other traders. Generally all traders initially start with an
equal amount of money P�xi , t=0�=��xi−a�. The sequential
time t is the number of bipartite trades. A trade consists of
two parts, �i� a rule for the selection of a distinct pair of
traders i and j, �i� j� and �ii� a distribution rule for sharing
their total money xi+xj between them. Different KEMs differ
from one another either in the selection rule or in the distri-
bution rule or in both. In the DY model a pair of traders is
selected with uniform probability. Their total money is then
randomly reshuffled between them. In the stationary state the
wealth distribution is P�x�=exp�−x / �x	� / �x	 where the mean
wealth �x	=a is usually set at unity �14�. Quite naturally a
trader invests a only a part of his money in a trade and not
his entire wealth. To incorporate this fact Chakraborti and*manna@bose.res.in
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Chakrabarti �CC� introduced a saving propensity � �15� same
for all traders. As a result the stationary state wealth distri-
bution gets modified to a distribution with a single maximum
which approximately fits to a Gamma distribution �16�.

In a second modification of the DY model Chatterjee,
Chakrabarti, and Manna �CCM� assigned a quenched distri-
bution of saving propensities ��i� so that each trader is char-
acterized by his own �i value �17�. Using the same selection
rule as in DY model, the total money invested by a pair of
traders after saving has been randomly shared between them.
The system reaches a stationary state here as well but it
sensitively depends on the precise values of �is. The wealth
distribution in the stationary state after averaging over differ-
ent realizations of the quenched disorder ��i� yields a power-
law decay with a value of the Pareto exponent �
1 �17�.
However, subsequent detailed analysis have revealed that the
CCM model has many interesting features �18�. For ex-
ample, in contrast to the DY and CC models, CCM model is
not ergodic. Therefore the wealth distribution is not self-
averaging and the single trader wealth distribution is totally
different from the over all wealth distribution of the whole
society. Consequently the individual saving propensity factor
�i plays the role of an identification label that determines the
economic strength of a member in the society �18�. In fact,
the wealth of a trader fluctuates around a mean value which
depends very sensitively on the precise value of �i. Larger
the value of � higher is the mean wealth. Truly the wealth
distribution averaged over many uncorrelated quenched ��i�
sets is the convolution of the individual members’ wealth
distributions �18�. This overall distribution for the whole sys-
tem exhibits Pareto law but not the individual member dis-
tributions. The exponent �=1 has been found to be exactly
equal to unity in �19,20�.

In Sec. II we describe our modification of the CCM model
using the preferential selection rule. The wealth distribution
of the modified CCM model has been described in Sec. III.
In Sec. IV we define the associated trade network in terms of
its nodal degrees and link weights. Section V presents the
degree distribution and the weight distribution is discussed in
Sec. VI. We summarize in Sec. VII

II. MODEL

It is a general observation that in a society the rich traders
invest much more in trade and therefore take part in the
trading process more frequently than the poor ones. To in-
corporate this fact in the CCM model that rich traders are
preferentially selected more frequently with higher probabili-
ties we introduce two parameters � and � in general, both
�0, to tune the preference different traders receive for their
selections. We assume that the probability of selection of a
trader is directly proportional to the � and �-th power of its
wealth. Therefore a pair of traders i and j �i� j� with money
xi and xj are selected with probabilities

�i�t� � xi�t�� and � j�t� � xj�t��. �1�

When �=�=0 we get back the CCM. When they are non-
zero the rich traders are selected with larger probabilities.
More rich a trader, higher is the probability that it will be

selected for trading. Once a pair of traders i and j is selected,
they save �i and � j fractions of their money and invest the
rest amounts to the mutual trade. The total invested amount
by both the traders is therefore

�ij�t� = �̄ixi�t� + �̄ jxj�t� , �2�

where �̄=1−�. This amount is then randomly divided into
two parts and received by them randomly,

xi�t + 1� = �ixi�t� + 	�t��ij�t� ,

xj�t + 1� = � jxj�t� + 	̄�t��ij�t� , �3�

where 	�t� is a freshly generated random fraction and
	̄=1−	.

It is essential that all measurements are done once the
system relaxes to the stationary state. For that it is necessary
that a number of transactions take place between every pair
of traders, only then the mean wealth of traders attain their
stationary values and fluctuate around them. Equation �1�
states that for any �� ,��
0 the richest and the next rich are
the most probable pair and the poorest and the next poor are
the least probable pair for selection. Assuming the maximum
wealth xmax�N �with �x	=1� and the minimal wealth
xmin�1 /N the relaxation time can be estimated which is the
typical time required for the poorest pair to make a trade.
The poorest is selected with a probability xmin

� /�ixi
�.

Approximating the denominator by its maximum value we
get �xmin /xmax���N−2�. Similarly the probability for select-
ing the next poorest is N−2� and for the poorest pair is
N−2��+��. Therefore, the time required for a trade between the
poorest pair T2�N2��+�� �see below� and the relaxation time
is several multiples of T2. Thus for any �� ,��
0 the relax-
ation time grows very rapidly with N.

At the early stage rich traders at the top level quickly take
part in the trading but gradually the inclusion of relatively
poor traders becomes increasingly slower. As a result the
number of distinct traders taking part in the trading process
grows very slowly. Effectively this implies that the system
passes through a very slow transient phase which is practi-
cally time independent. We call this state as the “quasista-
tionary state �QSS�.” It is to be noted that in the following
sections we present our numerical results for large system
sizes in the QSS only. To ensure that the system has indeed
reached the QSS we keep track of the sum �ixi

2 in our simu-
lations and collect the data only after no appreciable change
in its mean value is noticed. We mostly analyze the symmet-
ric �=� cases except for a few asymmetric cases.

III. WEALTH DISTRIBUTION

For CCM it was observed that the average money of a
trader �x���	 with saving propensity � diverges as �→1
�18�. Later it was shown that the divergence is like
�xi	�1−�i�=const �19,21�. This is likely since had there been
a trader with �=1, he would not invest any money at all but
always receives a share of the investments of the other trad-
ers. As a result this trader will eventually grab all the money
of the entire society and this situation is similar to the phe-
nomenon of condensation.

ABHIJIT CHAKRABORTY AND S. S. MANNA PHYSICAL REVIEW E 81, 016111 �2010�

016111-2



In Fig. 1�a� we plot the quantity �x���	�1−�� vs � for five
different values of �=�=0, 1/2, 1, 3/2, and 2. For �=�=0
we see the horizontal line as observed in �21�. However for
other � ,� values the variations in the same quantity are far
from being uniform and are monotonically increasing with �,
their growth becoming increasingly faster with �. Therefore
we try multiplying this function by �−���� where ����
is a function of the parameter �. In Fig. 1�b� we plot
�x���	�1−���−���� vs � using the same data of Fig. 1�a� with
����=0.15, 0.35, 0.57, and 0.80 for �=�=1 /2, 1, 3/2, and 2,
respectively. We get nearly uniform variations between �
=0.3 and 1. We assume that

�x���	�1 − ���−���� = const. �4�

If the distribution of � values is denoted by g���=const,
and since the wealth x and the saving propensity � are the
two mutually dependent variables associated with the same
trader, their probability distributions follow the relation �19�

P�x�dx = g���d� . �5�

Differentiating Eq. �4� with � one can find out the derivative
d� /dx and substituting in Eq. �5� one gets

P�x� =
C

x2 ��−� + �1 − ����−�−1�−1. �6�

For this equation we see that for large � the term within �¯ �
is of the order of unity. Therefore in this range P�x��x−2 as
in the Pareto law. This is an indication that even for
�� ,��
0, Pareto law holds good and in the following we
present numerical evidence in support of that.

The system is prepared by assigning uniformly distributed
random fractions for the saving propensities �i to all N trad-
ers. Here �is are quenched variables and therefore they re-
main fixed during the subsequent time evolution of the trad-
ing system. Consequently all observable that we measured
are averaged over different uncorrelated sets of the ��i� val-
ues. While assigning the � values we first draw N uniformly
distributed random fractions, but then to avoid the situation
when �max is very close to unity by chance we scale them
proportionately so that �max=1−1 /N in every ��i� set. First a
pair of values for �� ,�� is selected. Two types of initial
wealth distributions are used: �i� xi=1 for all i and �ii� xi’s are
uniformly distributed random numbers with �x	=const. The
sequence of bipartite trading begins by randomly selecting
pairs of traders using Eq. �1�. Once a pair is selected, their
total individual invested amount �ij is calculated using
Eq. �2� and this amount is shared again between them using
Eq. �3�. This constitute a single bipartite trading and the dy-
namics is followed over a large number of such trading
events.

The wealth distribution changes with time from the initial
distribution to more and more flat distribution. After a certain
time the system passes through the quasistationary state
when no appreciable change in the wealth distribution is ob-
served. It is also observed that the distribution is robust with
respect to the precise values of the parameters � and � used.
In Fig. 2�a� the wealth distribution P�x ,N� has been plotted
with x for four sets of parameter values namely, �=�=0,
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FIG. 1. �Color online� �a� Plots of �x���	�1−�� vs � for
�=�=0 �black�, 1/2 �red�, 1 �green�, 3/2 �blue�, and 2 �magenta� for
N=1024 �� increases from top to bottom�. �b� The product function
�x���	�1−���−���� is plotted with � using ����=0.15, 0.35, 0.57,
and 0.80 for �=1 /2, 1, 3/2, and 2, respectively, using the same
colors as in �a�.
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FIG. 2. �Color online� �a� Wealth distribution P�x ,N� vs x for
�=�=0, 1/2, 1, and 2 and for N=256 �black�, 1024 �red�, and 4096
�blue� �N increases from left to right�. The slopes of these curves
yield �=1.00�3� consistent with the Pareto law. �b� P�x ,N� for
�� ,��= �
 ,0� �black� and �0,
� �red� for N=1024 which almost
overlapped. �c� P�x ,N� for �� ,��= �
 ,
�, the distribution is uni-
form followed by a hump due to transactions between the richest
and the next richest traders only.
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1/2, 1, and 3/2 and for three system sizes N=256, 1024, and
4096. Apart from slight fluctuations the four curves for a
given system size nearly overlap on one another. On a
double-logarithmic scale the slopes of the curves give an
average estimate for �=1.00�3� consistent with the Pareto
law as observed in the CCM �17�. This indicates that the
wealth distribution is robust with respect to the parameter
values in this region. The nonzero values of � and � only
controls the frequencies with which different traders are
called for trading.

Next we consider the case when one of the two param-
eters �� ,�� is infinity and the other one is zero. If �=
 the
richest trader is always selected as the first trader. The other
trader is selected among the other N−1 traders with uniform
probability. As shown in Fig. 2�b� here also we see that the
Pareto law holds good. For �=
 and for finite � first the
richest trader is selected and then the second trader is se-
lected with probability �xj

�. We observe numerically that
here also Pareto law works very well.

However the situation is very different when both �� ,��
take very large values. In this situation almost always only
the rich traders are called for transactions. The system passes
through an extremely long QSS and the number of traders
taking part in trade does not increase at all. For example in
the limiting case of �� ,��= �
 ,
� it implies that always only
the richest and the next richest traders are selected for trans-
actions with probability one if their wealth are high enough
and therefore the trading process does not involve any other
trader. Therefore the wealth distribution for the single �i set
has two very high peaks and wealth of all other traders are
small and uniformly distributed. Consequently the quench
averaged wealth distribution is uniform throughout followed
by a hump at the highest value of wealth �Fig. 2�c��. A sys-
tematic analysis with many different �� ,�� pairs leads us to
conclude that Pareto law holds good in the positive quadrant
of the entire �� ,�� plane.

In Fig. 3 we exhibit this behavior in the positive quadrant
of the �� ,�� plane where Pareto law is valid and the limiting
points are marked by circles with their characteristics. The
origin at ��=0, �=0� represents the CCM model where
traders are selected randomly with uniform probabilities. As
explained below, the trade network corresponding to this
point is a random graph. As explained before that at the two
corners �
 ,0� and �0,
� the richest trader always partici-
pates in every transaction. Therefore the corresponding trade
networks have starlike structures. In the last corner of �
 ,
�
the trade takes place only between the richest and the next
rich traders and therefore the graph reduced to a single dimer
only.

IV. TRADE NETWORK

One can associate a network with this trading system.
Each trader is a node of the network. Initially the network
has only N nodes but no links. First the system is allowed to
reach the QSS and then the network starts growing. Every
time a pair of traders makes a trade for the first time, a link
is introduced between their nodes. There after no further link
is added between them irrespective of their subsequent trades

and they remain connected with a single link. As the system
evolves more and more traders take part in the trading dy-
namics and consequently the number of links grow in the
network. For �=�=0 the growth of the network is exactly
the same as that of the random graph, however it is much
different when �� ,��
0. Since the rich nodes are preferen-
tially selected they acquire links at a faster rate than the poor
nodes. The degree ki of the node i is the number of distinct
traders with whom the i-th trader has ever traded. The dy-
namics is continued for a certain time T till the average de-
gree �k	 of a node reaches a specific preassigned value.

In general there are two characteristic time scales in-
volved in this problem. At the early stage the network grows
with multiple components having different sizes. At time T1
the growing network becomes a single component connected
graph. A second time scale is T2 when the whole network
becomes a N-clique graph in which each node is linked to all
others, which implies that each trader has traded at least once
with all others. Unlike random graphs the growth of the net-
work is highly heterogeneous and the rich traders have much
larger degrees than the poor traders. Since poor traders are
selected with low probabilities they take much longer times
to be a part of the network. Consequently T1 is found to be
very large and of the same order as T2. Numerically it is
easier to calculate T2, one keeps track of the number of dis-
tinct links and stops only when this number becomes just
equal to �N�N−1�� /2. On the other hand to calculate T1 one
follows the growth of the giant component and stops when
the giant component covers all N nodes. A Hoshen-
Kopelman cluster counting algorithm �22� is used to estimate
the size of the giant component. For the ordinary CCM with
�=�=0 since both traders are chosen with uniform probabil-
ity, the generated graph is a simple Erdős-Rényi random
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STAR
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8( 8
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, )

STAR
(0, )8

Pareto
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FIG. 3. The phase diagram in the positive quadrant of the �� ,��
plane. The Pareto law is valid in the entire region. The origin cor-
responds to the CCM model where the trade network is a random
graph. At the corners �
 ,0� and �0,
� the richest trader trade in
every transaction, so that the network is a starlike graph but the
wealth distribution still follows Pareto law as shown in Fig. 2�b�.
However at the corner �
 ,
� the trade takes place between the top
two richest traders and the network shrinks to a single dimer. The
wealth distribution here is uniform followed by a hump as shown in
Fig. 2�c�.
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graph characterized by a Poissonian degree distribution �23�.
The growth of the giant component is studied with in-

creasing number of links n in the in the trade network. The
average fraction of nodes in the giant component is denoted
by �sm�� ,N�	 which is the order parameter in this percolation
problem. This has been plotted in Fig. 4�a� using a semilog
scale with link density �=n / �N�N−1�� /2 in the network.
Four curves shown in this figure correspond to N=128, 256,
512, and 1024 for �=�=1, the system size increasing from
right to left. The inset shows that a data collapse can be
obtained by scaling the � axis by a factor N� with �=0.88.
The critical density of percolation transition �c�N� is defined
as that particular value of � for which the average size of the
giant component �sm�� ,N�	=1 /2. In Fig. 4�b� we show that
how the critical percolation threshold �c�N� depends on N by
plotting it with N−� for �=�=1 /2, 3/4, and 1. It has been
observed that the exponent ���� is dependent on � in general
and in the inset of this figure we plot ���� vs �. We see that
for ��1 /2, ����=1 but for �
1 /2, ���� gradually de-
creases. For Erdős-Rényi random graph it is known that �
=1 and therefore this result gives an indication that the trade
network is likely to be different from random graphs for
�=�
1 /2.

V. DEGREE DISTRIBUTION

The degree distribution has been studied similar to ran-
dom graphs. We keep track of the average degree �k	 of the

network which is related to the number of links n of the
network as n= �k	 N

2 . First the degree distribution has been
studied for �k	=1 and for different system sizes. For an as-
signed set of values of �� ,��, for a given set of values for the
saving propensities ��i� and for a specific value of N once
�k	=1 is reached we calculate the degree distribution consid-
ering all components of the network on the same footing.
The network is then refreshed by removing all links and a
second network is constructed and so on. The dynamics is
continued for the same values of the parameters and the same
set of ��i�s till a large number of networks are generated and
their mean degree distribution is calculated. The entire dy-
namical process is then repeated with another uncorrelated
set of ��i�s and the degree distribution has been averaged
over many such sets.

In Fig. 5�a� we show the finite-size scaling plot of the
average degree distribution P�k ,N� vs k for �=�=1 and for
N=256, 1024, and 4096. On a double-logarithmic scale all
three curves show quite long scaling regions followed by
humps before the cut-off sizes of the degree distributions.
The cut-off sizes of the distributions shifts to the larger val-
ues of k approximately by equal amounts on the double-log
scale when the system size has been enhanced by the same
factor. From the direct measurement of slope in the scaling
region we estimate ��1�=2.18�3�. Almost the entire degree
distribution obeys nicely the usual finite-size scaling analysis
and an excellent collapse of the data is observed confirming
the validity of the following scaling form:

P�k,N� � N−����G�k/N����� , �7�

where the scaling function G�y� has its usual forms like,
G�y��y−���� as y→0 and G�y� approaches zero very fast for

FIG. 4. �Color online� Growth of the trade network. �a� Plot of
the average size of the giant component �sm�� ,N�	 with the link
density �, for �=�=1 and for N=128 �black�, 256 �red�, 512
�blue�, and 1024 �pink�, �N increases from right to left�. The inset
shows a data collapse of the same plots with �N�, and �=0.88. �b�
The percolation link density �c�N� is plotted with N−���� where
����=0.88, 0.92 and 1 for �=�=1 �black�, 3/4 �red�, and 1/2 �blue�
respectively �� increases from left to right�. The inset shows plot of
���� with �.

FIG. 5. �Color online� �a� The finite-size scaling of the degree
distributions P�k ,N� with �=�=1 for N=256 �black�, 1024 �red�,
and 4096 �blue� and for �k	=1 �N decreases from left to right�.
Direct measurement of slopes give �k�1�=2.18�3�. The best data
collapse corresponds to �k�1�=1.62 and �k�1�=0.75 giving
�k�1�=2.16�3�. �b� The plot of �k��� vs �.
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y�1. This is satisfied only when ����=���� /����. The ex-
ponents ���� and ���� fully characterize the scaling of
P�k ,N� in this case. To check the validity of the equation we
attempted a data collapse by plotting P�k ,N�N��1� vs k /N��1�

by tuning the values of ��1� and ��1�. The values obtained
for best data collapse are �k�1�=1.62 and �k�1�=0.75
implying that in the infinite size limit P�k ,
��k−��1� with
��1�=2.16�3�. Tuning � and � to other values it is observed
that the degree distribution exponent � does depend on these
two parameters. In Fig. 5�b� we show a plot of �k��� with �
which decreases to 
2 at �=2.

VI. WEIGHTED NETWORK

Within a certain time T a large number of bipartite trades
take place between any arbitrary pair of traders. The total
sum of the amounts �ij invested in all trades between the
traders i and j in time T is defined as the total volume of
trade wij =�T�ij. Therefore wij is regarded as the weight of
the link �ij�. The magnitudes of weights associated with the
links of the trade network are again found to be highly het-
erogeneous. This is primarily because within a certain time T
a rich pair of traders trade many more times than a rich-poor
or a poor-poor pair. In addition the invested amounts depend
on the mean wealth �xi	 of the traders involved as well as
their saving propensity factors �i. The probability distribu-
tion P�w ,N� of the link weights are calculated when the
average degree �k	 reaches a specific preassigned value. As
before, this distribution has also been averaged over many
weighted networks for one ��i� set and then further averaged
over many uncorrelated ��i� sets.

First we studied the case when the trade networks is a
N-clique graph, i.e., when each trader has traded with all
other traders at least once. Here each node has same degree,
i.e., P�k�=��k− �N−1�� and �k	=N−1. The required time T2
increases rapidly with N as described in Sec. II and we could
study small system size N=64 only. The distribution has a
very long tail and therefore we used a lin-log scale for plot-
ting. In Fig. 6�a� we show the plots of P�w ,�� with ln�w� for
different values of �=0, 1/4, 1/2, 3/4, and 1 and �=1. Each
curve is asymmetric and has a single maximum. The position
of the peak shifts toward larger values of ln�w� as � in-
creases. If Fig. 6�b� a similar plot has been shown for
�k	=5 for three network sizes N=128, 256, and 512 and for
�=�=1. On a double-logarithmic scale each curve has a
considerable straight portion. This indicates a power-law de-
cay like P�w ,N��w−�w. The corresponding slopes give esti-
mates for the exponent �w as 2.52, 2.53, and 2.51 for the
three system sizes respectively, so that on the average
�w=2.52�3�.

The strength of a node si=� jwij where j runs over all
neighbors ki of i, is a measure of the total volume of trade
handled by the i-th node. Nodal strengths varies over differ-
ent nodes over a wide range. We first study the probability
distribution of nodal strengths. In Fig. 7�a� the strength dis-
tribution P�s ,N� has been plotted for the average degree
�k	=5 for �=�=1 and for the network sizes 256, 1024, and
4096. Extended scaling regions at the intermediate regions of
the curves indicate that P�s ,N� also follows a power-law

decay function P�s ,N��s−�s in the limit of N→
. Direct
measurements gives an estimate of �s�1�
2.5. In Fig. 7�b�
we try a similar finite-size scaling of the same data giving
�s�1�=1.64 and �s�1�=0.67 giving �s�1�=2.45�5�.

Quite often weighted networks have nontrivial strength-
degree correlations. Example of such networks are the air-
port networks and the international trade network. For a net-
work where the link weights are randomly distributed, the
�s�k�	 grows linearly with k. However a nonlinear growth
like �s�k�	�k� with �
1 exhibits the presence of nontrivial
correlations. In Fig. 8�a� we plot the variation in �s�k�	 vs. k
for a system size N=16 384 and for different values of
�=�. The slopes of these plots give estimates for the expo-
nent ���� which gradually increased with � and this varia-
tion has been plotted in the inset. In the same context we also
studied how the mean wealth of a trader depends on its de-
gree. The mean wealth of a trader �x�k�	 has been plotted in
Fig. 8�b� with its degree k for the same system sizes as in
Fig. 8�a� and for the same values of parameters. A power-law
growth has been observed for all values of �: �x�k�	�k����.
The slopes of these plots give estimates for the exponent
���� which has been plotted in the inset of Fig. 8�b�.

VII. SUMMARY

To summarize, we have studied different structural prop-
erties of a trade network associated with the dynamical evo-
lution of a model of wealth distribution with quenched sav-
ing propensities. In this model distinguishable traders make
preferential bipartite trades among themselves and thus cre-
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FIG. 6. �Color online� Probability distribution P�w ,�� of the
link weights. �a� Plots for the N-clique graphs with N=64 and for
�=0 �black�, 1/4 �green�, 1/2 �blue�, 3/4 �magenta�, and 1 �red� and
�=1 always �the maximum value decreases with increasing ��. �b�
Plots for �k	=5 with �=�=1 and for the system sizes 128 �black�,
256 �red�, and 512 �blue� �N decreases from left to right�. Direct
measurement of slopes gives 2.52, 2.53, and 2.51, respectively.
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ate links among themselves. They are selected for trade pref-
erentially using a pair of continuously tunable parameters,
where the rich traders are picked up more frequently for
trade than poor traders. This creates strong heterogeneity in
the system which has been reflected in the power-law distri-
butions of the nodal degree and the link weight distributions
measuring volumes of mutual trade. We present numerical
evidence that the associated individual wealth distribution

follows the well-known Pareto law robustly for all positive
values of the parameters.

ACKNOWLEDGMENTS

We thankfully acknowledge P. K. Mohanty, A. Chatterjee,
and B. K. Chakrabarti for discussion and critical reading of
the paper.

�1� V. M. Yakovenko and J. B. Rosser, Rev. Mod. Phys. 81, 1703
�2009�.

�2� A. Chatterjee and B. K. Chakrabarti, Eur. Phys. J. B 60, 135
�2007�.

�3� R. Pastor-Satorras and A. Vespignani, Evolution and Structure
of the Internet: A Statistical Physics Approach �Cambridge
University Press, Cambridge, 2004�.

�4� D. J. Watts and S. H. Strogatz, Nature �London� 393, 440
�1998�.

�5� A.-L. Barabási and R. Albert, Science 286, 509 �1999�.
�6� R. Guimera and L. A. N. Amaral, Eur. Phys. J. B 38, 381

�2004�.
�7� A. Barrat, M. Barthélémy, R. Pastor-Satorras, and A. Vespig-

nani, Proc. Natl. Acad. Sci. U.S.A. 101, 3747 �2004�.
�8� M. Á. Serrano and M. Boguñá, Phys. Rev. E 68, 015101�R�

�2003�.

�9� K. Bhattacharya, G. Mukherjee, J. Saramaki, K. Kaski, and S.
S. Manna, J. Stat. Mech. �2008�, P02002.

�10� V. Pareto, Cours d’Economie Politique �F. Rouge, Lausanne,
1897�.

�11� en.wikipedia.org/wiki/Pareto_distribution.
�12� M. N. Saha and B. N. Srivastava, A Treatise on Heat �Indian

Press, Allahabad, 1931�, p. 105.
�13� S. Sinha and B. K. Chakrabarti, Physics News 39, 33 �2009�.
�14� A. A. Drăgulescu and V. M. Yakovenko, Eur. Phys. J. B 17,

723 �2000�.
�15� A. Chakraborti and B. K. Chakrabarti, Eur. Phys. J. B 17, 167

�2000�.
�16� M. Patriarca, A. Chakraborti, and K. Kaski, Phys. Rev. E 70,

016104 �2004�.
�17� A. Chatterjee, B. K. Chakrabarti, and S. S. Manna, Physica A

335, 155 �2004�; Phys. Scr. T106, 36 �2003�.

10
-3

10
-2

10
-1

10
0

10
1

s/N
0.67

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

P
(s

,N
)N

1.
64

10
0

10
1

10
2

10
3s

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
(s

,N
)

(a)

(b)
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